

http://nesusws.irb.hr/

Big Data Analytics 3rd NESUS Winter School on Data Science & Heterogeneous Computing

Parallel Computing and Optimization Group (PCOG), University of Luxembourg (UL), Luxembourg

http://nesusws-tutorials-BD-DL.rtfd.io

Before the tutorial starts: Visit https://goo.gl/M5ABf7 for preliminary setup instructions!

Jan. 23th, 2018, Zagreb, Croatia

ebastien Varrette (University of Luxembourg)

LUXEMBOURG

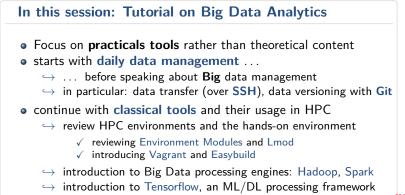
Big Data Analytics

https://varrette.gforge.uni.lu

- Permanent Research Scientist at University of Luxembourg
 - \hookrightarrow Part of the PCOG Team led by Prof. P. Bouvry since 2007
 - \hookrightarrow Research interests:
 - ✓ High Performance Computing
 - \checkmark Security (crash/cheating faults, obfuscation, blockchains)
 - $\checkmark~$ Performance of HPC/Cloud/IoT platforms and services
- Manager of the UL HPC Facility with Prof. P. Bouvry since 2007
 - $\hookrightarrow~\simeq$ 206.772 TFlops (2017), 7952.4 TB
 - ↔ expert UL HPC team (S. Varrette, V. Plugaru, S. Peter, H. Cartiaux, C. Parisot)
- National / EU HPC projects:
 - \hookrightarrow ETP4HPC, EU COST NESUS...
 - \hookrightarrow PRACE[2] (acting Advisor)
 - $\,\hookrightarrow\,$ EuroHPC / IPCEI on HPC and Big Data (BD) Applications

Welcome!

• 3rd NESUS WS on Data Science & Heterogeneous Computing



Disclaimer: Acknowledgements

- Part of these slides were **courtesy** borrowed w. permission from:
 - $\,\hookrightarrow\,$ Prof. Martin Theobald (Big Data and Data Science Research Group), UL
- Part of the slides material adapted from:
 - $\,\hookrightarrow\,$ Advanced Analytics with Spark, O Reilly
 - $\,\hookrightarrow\,$ Data Analytics with HPC courses
 - ✓ ⓒ CC AttributionNonCommercial-ShareAlike 4.0
- the hands-on material is adapted from several resources:
 - $\,\hookrightarrow\,$ (of course) the UL HPC School, credits: UL HPC team
 - ✓ S. Varrette, V. Plugaru, S. Peter, H. Cartiaux, C. Parisot
 - \hookrightarrow similar Github projects:
 - ✓ Jonathan Dursi: hadoop-for-hpcers-tutorial

Lecture & hands-on: Big Data Analytics: Overview and Practical Examples

http://nesusws-tutorials-BD-DL.rtfd.io

Time	Session
09:00 - 09:30	Discover the Hands-on tool: Vagrant
09:30 - 10:00	HPC and Big Data (BD): Architectures and Trends
10:00 - 10:30	Interlude: Software Management in HPC systems
10:30 - 11:00	[Big] Data Management in HPC Environment: Overview and
	Challenges
11:00 - 11:15	Coffee Break
11:15 - 12:30	Big Data Analytics with Hadoop & Spark
12:30 - 13:00	Deep Learning Analytics with Tensorflow
13:00	Lunch

Summary

Introduction

Before we start Overview of HPC & BD Trends Main HPC and DB Components

2 Interlude: Software Management in HPC systems

[3] [Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spark Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spar Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Summary

Introduction

Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spar Apache Hadoop Apache Spark

5

Deep Learning Analytics with Tensorflow

Tutorial Pre-Requisites / Setup

http://nesusws-tutorials-BD-DL.rtfd.io/

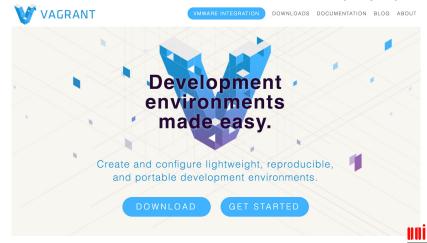
- Follow instructions on Getting Started / Pre-requisites
 - \hookrightarrow create (if needed) accounts: Github, Vagrant Cloud, Docker Hub
 - \hookrightarrow install mandatory software, *i.e.* (apart from Git):

Platform	Software	Description	Usage
Mac OS Mac OS Mac OS Windows Windows Windows/Linux Windows/Linux Linux Windows	Homebrew Brew Cask Plugin iTerm2 MobaXTERM Git for Windows SourceTree Virtual Box Vagrant Docker for Ubuntu Docker for Windows	The missing package manager for macOS Mac OS Apps install made easy (optional) enhanced Terminal Terminal with tabbed SSH client may be you guessed (optional) enhanced git GUI Free hypervisor provider for Vagrant Reproducible environments made easy. Lightweight Reproducible Containers Lightweight Reproducible Containers	brew install brew cask install

Sebastien Varrette (University of Luxembourg)

Discover the Hands-on Tool: Vagrant

http://vagrantup.com/



Sebastien Varrette (University of Luxembourg)

Big Data Analytics

10 / 133

What is Vagrant ?

Create and configure **lightweight**, **reproducible**, and **portable** development environments

- Command line tool
- Easy and Automatic per-project VM management
 - \hookrightarrow Supports many hypervisors: VirtualBox, VMWare...
 - $\hookrightarrow {\sf Easy text-based configuration (Ruby syntax)} {\sf Vagrantfile}$
- Supports provisioning through configuration management tools
 - $\hookrightarrow \mathsf{Shell}$
 - \hookrightarrow Puppet
 - $\, \hookrightarrow \, \, \mathsf{Salt} \ldots$

https://puppet.com/ https://saltstack.com/

vagrant [...]

Cross-platform: runs on Linux, Windows, MacOS

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

.

Installation Notes

http://nesusws-tutorials-BD-DL.rtfd.io/en/latest/setup/preliminaries/

- Mac OS X:
 - $\,\hookrightarrow\,$ best done using Homebrew and Cask

\$> brew install caskroom/cask/brew-cask
\$> brew cask install virtualbox # install virtualbox
\$> brew cask install vagrant
\$> brew cask install vagrant-manager # cf http://vagrantmanager.com/

- Windows / Linux:
 - $\,\hookrightarrow\,$ install Oracle Virtualbox and the Extension Pack
 - \hookrightarrow install Vagrant

12 / 133

Sebastien Varrette (University of Luxembourg)

SSH Ø Reload

Halt
 X Destroy
 Provision

Open in Finder

Why use Vagrant?

• Create new VMs quickly and easily: only one command!

 \hookrightarrow vagrant up

- Keep the number of VMs under control
 - \hookrightarrow All configuration in VagrantFile
- Reproducibility
 - $\,\hookrightarrow\,$ Identical environment in development and production
- Portability
 - \hookrightarrow avoid sharing 4 GB VM disks images
 - $\, \hookrightarrow \, \, \mathsf{Vagrant} \, \, \mathsf{Cloud} \, \, \mathsf{to} \, \mathsf{share} \, \, \mathsf{your} \, \mathsf{images} \,$
- Collaboration made easy:
 - \$> git clone ...
 \$> vagrant up

Minimal default setup

\$> vagrant init [-m] <user>/<name> # setup vagrant cloud image

- A Vagrantfile is configured for box <user>/<name>
 - \hookrightarrow Find existing box: Vagrant Cloud

https://vagrantcloud.com/

- $\,\hookrightarrow\,$ You can have multiple (named) box within the same Vagrantfile
 - ✓ See ULHPC/puppet-sysadmins/Vagrantfile
 - ✓ See Falkor/tutorials-BD-ML/Vagrantfile

```
Vagrant.configure(2) do |config|
    config.vm.box = '<user>/<name>'
    config.ssh.insert_key = false
end
```

Introduction

Box name	Description	
ubuntu/trusty64	Ubuntu Server 14.04 LTS	
debian/contrib-jessie64	Vanilla Debian 8 Jessie	
centos/7	CentOS Linux 7 x86_64	

bebastien Varrette (University of Luxembourg)

Big Data Analytics

Pulling and Running a Vagrant Box

\$> vagrant up # boot the box(es) set in the Vagrantfile

- Base box is downloaded and stored locally ~/.vagrant.d/boxes/
- A new VM is created and configured with the base box as template
 - $\,\hookrightarrow\,$ The VM is booted and (eventually) provisioned
 - $\,\hookrightarrow\,$ Once within the box: /vagrant = directory hosting Vagrantfile

Pulling and Running a Vagrant Box

\$> vagrant up # boot the box(es) set in the Vagrantfile

- Base box is downloaded and stored locally ~/.vagrant.d/boxes/
- A new VM is created and configured with the base box as template
 - \hookrightarrow The VM is booted and (eventually) provisioned
 - $\,\hookrightarrow\,$ Once within the box: /vagrant = directory hosting Vagrantfile

\$> vagrant status

Introduction

State of the vagrant box(es)

Pulling and Running a Vagrant Box

\$> vagrant up # boot the box(es) set in the Vagrantfile

- Base box is downloaded and stored locally ~/.vagrant.d/boxes/
- A new VM is created and configured with the base box as template
 - \hookrightarrow The VM is booted and (eventually) provisioned
 - $\,\hookrightarrow\,$ Once within the box: /vagrant = directory hosting Vagrantfile

Sebastien Varrette (University of Luxembourg)

Stopping Vagrant Box

\$> vagrant { destroy | halt }

destroy / halt

• Once you have finished your work within a running box

- \hookrightarrow save the state for later with vagrant halt
- \hookrightarrow reset changes / tests / errors with vagrant destroy
- $\,\hookrightarrow\,$ commit changes by generating a new version of the box

Hands-on 0: Vagrant

• This tutorial heavily relies on Vagrant

Introduction

 $\,\hookrightarrow\,$ you will need to familiarize with the tool if not yet done

Summary

Before we start... Overview of HPC & BD Trends Main HPC and DB Components

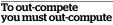
Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spar Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Andy Grant, Head of Big Data and HPC, Atos UK&I



Increasing competition, heightened customer expectations and shortening product development cycles are forcing the pace of acceleration across all industries.

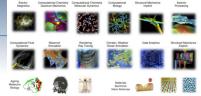
Sebastien Varrette (University of Luxembourg)

BD: **B**ig **D**ata

Big Data Analytics

19 / 133

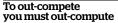
Why HPC and BD ?



HPC: High Performance Computing BD: Big Data

- Essential tools for Science, Society and Industry
 - $\,\hookrightarrow\,$ All scientific disciplines are becoming computational today
 - $\checkmark~$ requires very high computing power, handles huge volumes of data
- Industry, SMEs increasingly relying on HPC
 - \hookrightarrow to invent innovative solutions
 - \hookrightarrow \ldots while reducing cost & decreasing time to market

Andy Grant, Head of Big Data and HPC, Atos UK&I

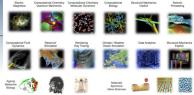


Increasing competition, heightened customer expectations and shortening product development cycles are forcing the pace of acceleration across all industries.

Sebastien Varrette (University of Luxembourg)

Big Data Analytic

19 / 133



HPC: High Performance Computing BD: Big Data

- Essential tools for Science, Society and Industry
 - $\,\hookrightarrow\,$ All scientific disciplines are becoming computational today
 - $\checkmark~$ requires very high computing power, handles huge volumes of data
- Industry, SMEs increasingly relying on HPC
 - $\,\hookrightarrow\,$ to invent innovative solutions
 - \hookrightarrow ... while reducing cost & decreasing time to market
- HPC = **global race** (strategic priority) EU takes up the challenge:
 - $\,\hookrightarrow\,$ EuroHPC / IPCEI on HPC and Big Data (BD) Applications

Andy Grant, Head of Big Data and HPC, Atos UK&I

To out-compete you must out-compute

Increasing competition, heightened customer expectations and shortening product development cycles are forcing the pace of acceleration across all industries.

Sebastien Varrette (University of Luxembourg)

Big Data Analytic

New Trends in HPC

- Continued scaling of scientific, industrial & financial applications
 - \hookrightarrow ... well beyond Exascale
- New trends changing the landscape for HPC
 - → Emergence of **Big Data analytics**

 - → Data intensive Internet of Things (IoT) applications
 - $\,\hookrightarrow\,$ Deep learning & cognitive computing paradigms

Analysis of the Characteristics and Development Trends of the Next-Generation of Supercomputers in Foreign Countries

Earl C. Joseph, Ph.D. Steve Conway

Robert Sorensen Kevin Monroe

[Source : IDC RIKEN report, 2016]

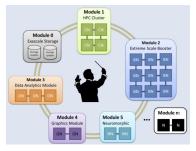
Sebastien Varrette (University of Luxembourg)

[Source : EuroLab-4-HPC]

Big Data Analytics

Toward Modular Computing

- Aiming at scalable, flexible HPC infrastructures
 - \hookrightarrow *Primary* processing on CPUs and accelerators
 - ✓ HPC & Extreme Scale Booster modules
 - $\hookrightarrow \textit{ Specialized modules for:}$
 - ✓ HTC & I/O intensive workloads;
 - ✓ [Big] Data Analytics & Al



[Source : "Towards Modular Supercomputing: The DEEP and DEEP-ER projects", 2016]

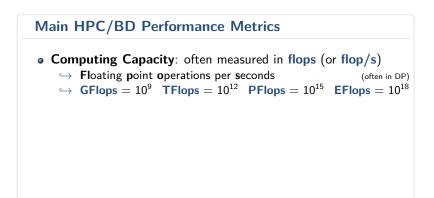
Sebastien Varrette (University of Luxembourg)

Big Data Analytics

21 / 133

Prerequisites: Metrics

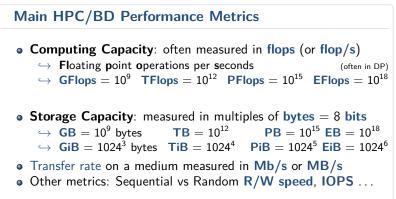
• HPC: High Performance Computing



Sebastien Varrette (University of Luxembourg)

Prerequisites: Metrics

• HPC: High Performance Computing



Summary

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges

Big Data Analytics with Hadoop & Spark

HPC Components: [GP]CPU

CPU

Always multi-core

• Ex: Intel Core i7-7700K (Jan 2017) $R_{peak} \simeq 268.8$ GFlops (DP)

 $\,\hookrightarrow\,$ 4 cores @ 4.2GHz (14nm, 91W, 1.75 billion transistors)

 \hookrightarrow + integrated graphics (24 EUs)

GPU / GPGPU

- Always multi-core, optimized for vector processing
- Ex: Nvidia Tesla V100 (Jun 2017) $R_{peak} \simeq 7$ TFlops (DP)

 $\,\hookrightarrow\,$ 5120 cores @ 1.3GHz (12nm, 250W, 21 billion transistors)

 \hookrightarrow focus on Deep Learning workloads $R_{peak} \simeq 112$ TFLOPS (HP)

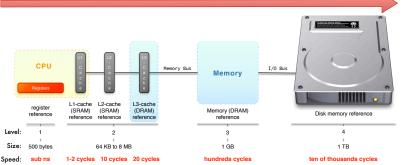
\simeq 100 Gflops for 130\$ (CPU), 214\$? (GPU)

Sebastien Varrette (University of Luxembourg)

 $R_{peak} \simeq +441.6 \text{ GFlops}$

HPC Components: Local Memory

Larger, slower and cheaper



 ● SSD (SATA3) R/W: 550 MB/s; 100000 IOPS
 450 €/TB

 ● HDD (SATA3 @ 7,2 krpm) R/W: 227 MB/s; 85 IOPS
 54 €/TB

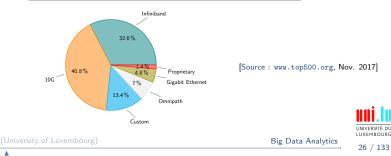
Sebastien Varrette (University of Luxembourg)

Big Data Analytics

HPC Components: Interconnect

- latency: time to send a minimal (0 byte) message from A to B
- bandwidth: max amount of data communicated per unit of time

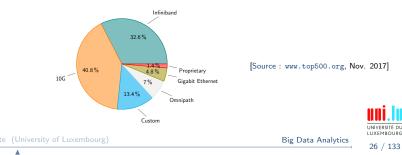
Technology	Effective Bandwidth		Latency
Gigabit Ethernet	1 Gb/s	125 MB/s	40µs to 300µs
10 Gigabit Ethernet	10 Gb/s	1.25 GB/s	4μ s to 5μ s
Infiniband QDR	40 Gb/s	5 GB/s	1.29µs to 2.6µs
Infiniband EDR	100 Gb/s	12.5 GB/s	0.61µs to 1.3µs
100 Gigabit Ethernet	100 Gb/s	1.25 GB/s	30µs
Intel Omnipath	100 Gb/s	12.5 GB/s	0.9µs



HPC Components: Interconnect

- latency: time to send a minimal (0 byte) message from A to B
- bandwidth: max amount of data communicated per unit of time

Technology	Effective Bandwidth		Latency
Gigabit Ethernet	1 Gb/s	125 MB/s	40µs to 300µs
10 Gigabit Ethernet	10 Gb/s	1.25 GB/s	4μ s to 5μ s
Infiniband QDR	40 Gb/s	5 GB/s	1.29µs to 2.6µs
Infiniband EDR	100 Gb/s	12.5 GB/s	0.61µs to 1.3µs
100 Gigabit Ethernet	100 Gb/s	1.25 GB/s	30µs
Intel Omnipath	100 Gb/s	12.5 GB/s	0.9µs



Network Topologies

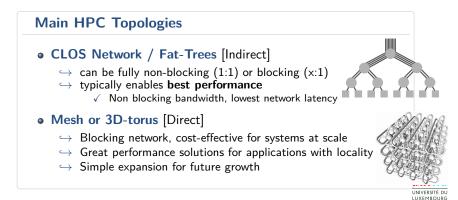
- Direct vs. Indirect interconnect
 - $\,\hookrightarrow\,$ direct: each network node attaches to at least one compute node
 - $\,\hookrightarrow\,$ indirect: compute nodes attached at the edge of the network only
 - $\checkmark~$ many routers only connect to other routers.

Network Topologies

- Direct vs. Indirect interconnect
 - \hookrightarrow *direct*: each network node attaches to at least one compute node
 - $\,\hookrightarrow\,$ indirect: compute nodes attached at the edge of the network only
 - $\checkmark~$ many routers only connect to other routers.

Network Topologies

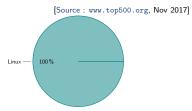
- Direct vs. Indirect interconnect
 - \hookrightarrow *direct*: each network node attaches to at least one compute node
 - $\,\hookrightarrow\,$ indirect: compute nodes attached at the edge of the network only
 - $\checkmark~$ many routers only connect to other routers.



HPC Components: Operating System

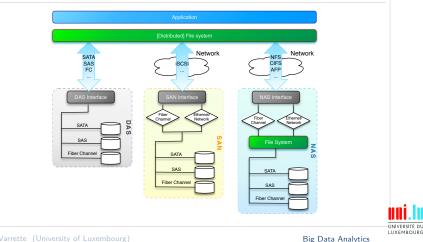


- Exclusively Linux-based (really 100%)
- Reasons:
 - \hookrightarrow stability
 - \hookrightarrow prone to devels



[Big]Data Management

Storage architectural classes & I/O layers



29 / 133

Introduction

[Big]Data Management: Disk Encl.

• \simeq **120 K**€ - enclosure - 48-60 disks (4U) \hookrightarrow incl. redundant (i.e. 2) RAID controllers (master/slave)

ebastien Varrette (University of Luxembourg)

Big Data Analytics

File System (FS)

• Logical manner to store, organize, manipulate & access data

Sebastien Varrette (University of Luxembourg

Big Data Analytics

31 / 133

File System (FS)

• Logical manner to store, organize, manipulate & access data

• (local) Disk FS : FAT32, NTFS, HFS+, ext{3,4}, {x,z,btr}fs...

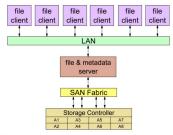
- $\,\hookrightarrow\,$ manage data on permanent storage devices
- $\hookrightarrow \textit{ poor perf.} \qquad \text{ read: } 100 \rightarrow 400 \text{ MB/s} \mid \text{write: } 10 \rightarrow 200 \text{ MB/s}$

Sebastien Varrette (University of Luxembourg)

• Networked FS:

NFS, CIFS/SMB, AFP

- $\,\hookrightarrow\,$ disk access from remote nodes via network access
- $\,\hookrightarrow\,$ poorer performance for HPC jobs especially parallel I/O
 - \checkmark read: only 381 MB/s on a system capable of 740MB/s (16 tasks)
 - \checkmark write: only 90MB/s on system capable of 400MB/s (4 tasks)



[Source : LISA'09] Ray Paden: How to Build a Petabyte Sized Storage System

COMMENT:

Traditionally, a single NFS/CIFS file server manages both user data and metadata operations which "gates" performance/scaling and presents a single point of failure risk. Products (e.g., CNFS) are available that provide multiple server designs to avoid this issue.

Big Data Analytics

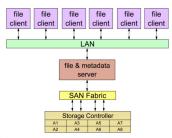
32 / 133

bastien Varrette (University of Luxembourg

• Networked FS:

NFS, CIFS/SMB, AFP

- $\,\hookrightarrow\,$ disk access from remote nodes via network access
- $\,\hookrightarrow\,$ poorer performance for HPC jobs especially parallel I/O
 - ✓ read: only 381 MB/s on a system capable of 740MB/s (16 tasks)
 - \checkmark write: only 90MB/s on system capable of 400MB/s (4 tasks)



COMMENT:

Traditionally, a single NFS/CIFS file server manages both user data and metadata operations which "gates" performance/scaling and presents a single point of failure risk. Products (e.g., CNFS) are available that provide multiple server designs to avoid this issue.

[Source : LISA'09] Ray Paden: *How to Build a Petabyte Sized Storage System*

- [scale-out] NAS
 - \hookrightarrow aka Appliances OneFS...
 - $\,\hookrightarrow\,$ Focus on CIFS, NFS
 - \hookrightarrow Integrated HW/SW
 - → Ex: EMC (Isilon), IBM (SONAS), DDN...

Big Data Analytics

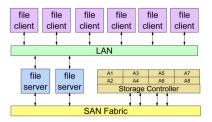
Introduction

[Big]Data Management: File Systems

Basic Clustered FS

GPFS

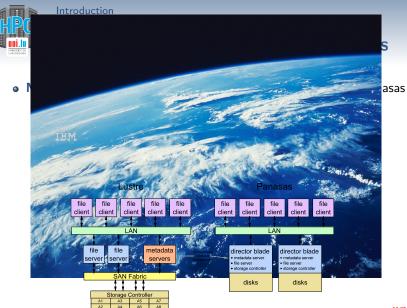
- $\, \hookrightarrow \, \, \mathsf{File} \, \, \mathsf{access} \, \, \mathsf{is} \, \, \mathsf{parallel} \,$
- $\,\hookrightarrow\,$ File System overhead operations is distributed and done in parallel
 - no metadata servers
- $\,\hookrightarrow\,$ File clients access file data through file servers via the LAN



File system overhead operations are *distributed* across the entire cluster and is done in parallel; it is not concentrated in any given place. There is no single server bottleneck. User data and metadata flows betweem all nodes and all disks via the file servers.

ebastien Varrette (University of Luxembourg)

33 / 133



uni.lu UNIVERSITÉ DU LUXEMBOURG

Big Data Analytics

34 / 133

[Big]Data Management: FS Summary

- File System (FS): Logical manner to store, organize & access data
 - \hookrightarrow (local) Disk FS : FAT32, NTFS, HFS+, ext4, {x,z,btr}fs...
 - \hookrightarrow Networked FS: NFS, CIFS/SMB, AFP

 - \hookrightarrow **Parallel/Distributed FS**: SpectrumScale/GPFS, Lustre
 - ✓ typical FS for HPC / HTC (High Throughput Computing)

[Big]Data Management: FS Summary

- File System (FS): Logical manner to store, organize & access data
 - $\hookrightarrow (local) Disk FS : FAT32, NTFS, HFS+, ext4, {x,z,btr}fs...$
 - \hookrightarrow Networked FS: NFS, CIFS/SMB, AFP
 - \hookrightarrow Parallel/Distributed FS: SpectrumScale/GPFS, Lustre
 - ✓ typical FS for HPC / HTC (High Throughput Computing)

Main Characteristic of Parallel/Distributed File Systems

Capacity and Performance increase with #servers

Sebastien Varrette (University of Luxembourg)

[Big]Data Management: FS Summary

- File System (FS): Logical manner to store, organize & access data
 - $\hookrightarrow (local) Disk FS : FAT32, NTFS, HFS+, ext4, {x,z,btr}fs...$
 - \hookrightarrow Networked FS: NFS, CIFS/SMB, AFP
 - \hookrightarrow Parallel/Distributed FS: SpectrumScale/GPFS, Lustre
 - ✓ typical FS for HPC / HTC (High Throughput Computing)

Main Characteristic of Parallel/Distributed File Systems

Capacity and Performance increase with #servers

Name	Туре	$Read \texttt{*} \; [GB/s]$	Write* [GB/s]
ext4	Disk FS	0.426	0.212
nfs	Networked FS	0.381	0.090
gpfs (iris)	Parallel/Distributed FS	10.14	8,41
gpfs (gaia)	Parallel/Distributed FS	7.74	6.524
lustre	Parallel/Distributed FS	4.5	2.956

* maximum random read/write, per IOZone or IOR measures, using 15 concurrent nodes for networked FS.

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

HPC Components: Data Center

Definition (Data Center)

Introduction

• Facility to house computer systems and associated components

 \hookrightarrow Basic storage component: rack (height: 42 RU)

Sebastien Varrette (University of Luxembourg)

HPC Components: Data Center

Definition (Data Center)

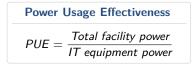
Introduction

- Facility to house computer systems and associated components
 - \hookrightarrow Basic storage component: rack (height: 42 RU)

Challenges: Power (UPS, battery), Cooling, Fire protection, Security

- Power/Heat dissipation per rack:
 - \hookrightarrow HPC computing racks: 30-120 kW
 - → Storage racks: 15 kW
 - → Interconnect racks: 5 kW
- Various Cooling Technology

- $\, \hookrightarrow \, \, \mathsf{Airflow} \,$
- $\,\hookrightarrow\,$ Direct-Liquid Cooling, Immersion...



Big Data Analytics

Interlude: Software Management in HPC systems

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

2 Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Sp Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Big Data Analytics

https://hpc.uni.lu/users/software/

- Based on Environment Modules / LMod
 - $\,\hookrightarrow\,$ convenient way to dynamically change the users environment <code>\$PATH</code>
 - $\,\hookrightarrow\,$ permits to easily load software through module command
- Currently on UL HPC:
 - $\,\hookrightarrow\,>163$ software packages, in multiple versions, within 18 categ.
 - $\,\hookrightarrow\,$ reworked software set for iris cluster and now deployed everywhere
 - ✓ RESIF v2.0, allowing [real] semantic versioning of released builds
 - \hookrightarrow hierarchical organization

Ex: toolchain/{foss,intel}

\$> module avail

List available modules

\$> module load <category>/<software>[/<version>]

Sebastien Varrette (University of Luxembourg)

Big Data Analytic

- Key module variable: \$MODULEPATH / where to look for modules
 - \hookrightarrow altered with module use <path>. Ex:

export EASYBUILD_PREFIX=\$HOME/.local/easybuild
export LOCAL_MODULES=\$EASYBUILD_PREFIX/modules/all
module use \$LOCAL_MODULES

Sebastien Varrette (University of Luxembourg)

- Key module variable: \$MODULEPATH / where to look for modules
 - \hookrightarrow altered with module use <path>. Ex:

export EASYBUILD_PREFIX=\$HOME/.local/easybuild
export LOCAL_MODULES=\$EASYBUILD_PREFIX/modules/all
module use \$LOCAL_MODULES

Main modules commands:

Command	Description
module avail	Lists all the modules which are available to be loaded
module spider <pattern></pattern>	Search for among available modules (Lmod only)
module load <mod1> [mod2]</mod1>	Load a module
module unload <module></module>	Unload a module
module list	List loaded modules
module purge	Unload all modules (purge)
module display <module></module>	Display what a module does
module use <path></path>	Prepend the directory to the MODULEPATH environment variable
module unuse <path></path>	Remove the directory from the MODULEPATH environment variable

http://hpcugent.github.io/easybuild/

- Easybuild: open-source framework to (automatically) build scientific software
- Why?: "Could you please install this software on the cluster?"
 - \hookrightarrow Scientific software is often **difficult** to build
 - ✓ non-standard build tools / incomplete build procedures
 - $\checkmark\,$ hardcoded parameters and/or poor/outdated documentation
 - $\,\hookrightarrow\,$ EasyBuild helps to facilitate this task
 - ✓ consistent software build and installation framework
 - \checkmark includes testing step that helps validate builds
 - $\checkmark\,$ automatically generates LMod modulefiles

```
$> module use $LOCAL_MODULES
$> module load tools/EasyBuild
$> eb -S HPL  # Search for recipes for HPL software
$> eb HPL-2.2-intel-2017a.eb # Install HPL 2.2 w. Intel toolchain
```

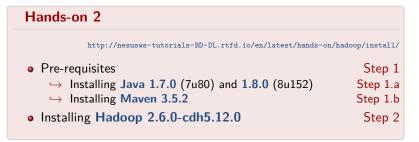

Hands-on 1: Modules & Easybuild

Your Turn!			
Hands-on 1			
http://nesusws-tutorials-BD-DL.rtfd.io/en/latest/hands-on/easybuild/			
Discover Environment Modules and Lmod Part			
 Installation of EasyBuild 	Part 2 (a)		
 Local vs. Global Usage 	Part 2 (b)		
\hookrightarrow local installation of zlib			
\hookrightarrow global installation of snappy and protobuf, needed later			

Sebastien Varrette (University of Luxembourg)

Hands-on 2: Building Hadoop

- We will need to install the Hadoop MapReduce by Cloudera using EasyBuild.
 - \hookrightarrow this build is quite long (~30 minutes on 4 cores)
 - $\,\hookrightarrow\,$ Obj: make it build while the keynote continues ;)



Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

4

Big Data Analytics with Hadoop & Spark Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer

Data transfer in practice Sharing Data

4

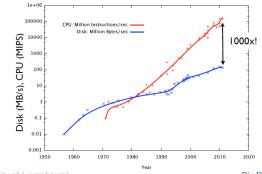
Big Data Analytics with Hadoop & Spark Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Sebastien Varrette (University of Luxembourg

Data Intensive Computing

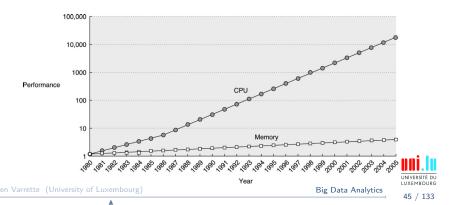
- Data volumes increasing massively
 - \hookrightarrow Clusters, storage capacity increasing massively
- Disk speeds are not keeping pace.
- Seek speeds even worse than read/write



Sebastien Varrette (University of Luxembourg)

Data Intensive Computing

- Data volumes increasing massively
 - $\,\hookrightarrow\,$ Clusters, storage capacity increasing massively
- Disk speeds are not keeping pace.
- Seek speeds even worse than read/write



Speed Expectation on Data Transfer

http://fasterdata.es.net/

• How long to transfer 1 TB of data across various speed networks?

Network	Time
10 Mbps	300 hrs (12.5 days)
100 Mbps	30 hrs
1 Gbps	3 hrs
10 Gbps	20 minutes

- (Again) small I/Os really kill performances
 - $\,\hookrightarrow\,$ Ex: transferring 80 TB for the backup of <code>ecosystem_biology</code>
 - \hookrightarrow same rack, 10Gb/s. 4 weeks \longrightarrow 63TB transfer...

Sebastien Varrette (University of Luxembourg)

Speed Expectation on Data Transfer

http://fasterdata.es.net/

Data set size)			
10PB	166.67 TB/sec	33.33 TB/sec	8.33 TB/sec	2.78 TB/sec
1PB	16.67 TB/sec	3.33 TB/sec	833.33 GB/sec	277.78 GB/sec
100TB	1.67 TB/sec	333.33 GB/sec	83.33 GB/sec	27.78 GB/sec
10TB	166.67 GB/sec	33.33 GB/sec	8.33 GB/sec	2.78 GB/sec
1TB	16.67 GB/sec	3.33 GB/sec	833.33 MB/sec	277.78 MB/sec
100GB	1.67 GB/sec	333.33 MB/sec	83.33 MB/sec	27.78 MB/sec
10GB	166.67 MB/sec	33.33 MB/sec	8.33 MB/sec	2.78 MB/sec
1GB	16.67 MB/sec	3.33 MB/sec	0.83 MB/sec	0.28 MB/sec
100MB	1.67 MB/sec	0.33 MB/sec	0.08 MB/sec	0.03 MB/sec
	1 Minute	5 Minutes	20 Minutes	1 Hour
	Time to transfer			

Sebastien Varrette (University of Luxembourg

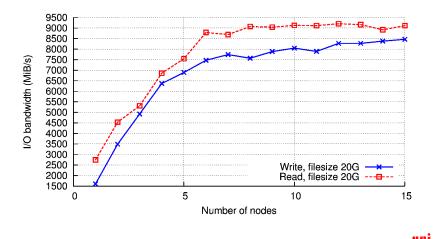
Speed Expectation on Data Transfer

http://fasterdata.es.net/

Data set size				
1XB	34.72 TB/sec	11.57 TB/sec	1.65 TB/sec	385.80 GB/sec
100PB	3.47 TB/sec	1.16 TB/sec	165.34 GB/sec	38.58 GB/sec
10PB	347.22 GB/sec	115.74 GB/sec	16.53 GB/sec	3.86 GB/sec
1PB	34.72 GB/sec	11.57 GB/sec	1.65 GB/sec	385.80 MB/sec
100TB	3.47 GB/sec	1.16 GB/sec	165.34 MB/sec	38.58 MB/sec
10TB	347.22 MB/sec	115.74 MB/sec	16.53 MB/sec	3.86 MB/sec
1TB	34.72 MB/sec	11.57 MB/sec	1.65 MB/sec	0.39 MB/sec
100GB	3.47 MB/sec	1.16 MB/sec	0.17 MB/sec	0.04 MB/sec
10GB	0.35 MB/sec	0.12 MB/sec	0.02 MB/sec	0.00 MB/sec
	8 Hours	24 Hours	7 Days	30 Days
	Time to transfer			

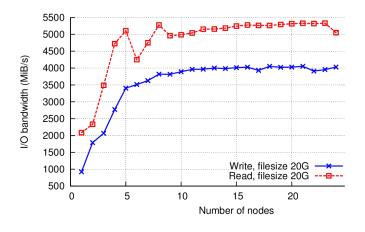
Sebastien Varrette (University of Luxembourg

Storage Performances: GPFS



[Big] Data Management in HPC Environment: Overview and Challenges

Storage Performances: Lustre



UNIVERSITÉ DU LUXEMBOURG

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

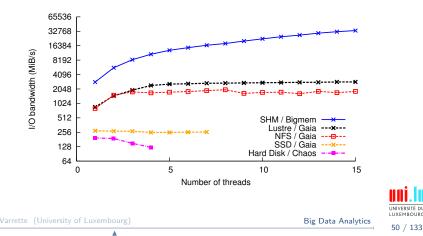
49 / 133

Storage Performances

 $\bullet\,$ Based on IOR or IOZone, reference I/O benchmarks

Read

 \hookrightarrow tests performed in 2013

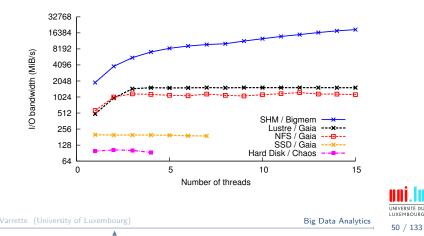


Storage Performances

 $\bullet\,$ Based on IOR or IOZone, reference I/O benchmarks

Write

 \hookrightarrow tests performed in 2013



Understanding Your Storage Options

Where can I store and manipulate my data?



 \Rightarrow In all cases: small I/Os really kill storage performances

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

4

Big Data Analytics with Hadoop & Spark Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Data Transfer in Practice

<pre>\$> wget [-0 <output>] <url></url></output></pre>	# download file from <url></url>
<pre>\$> curl [-o <output>] <url></url></output></pre>	# download file from <url></url>

• Transfer from FTP/HTTP[S]

wget or (better) curl

- $\,\hookrightarrow\,$ can also serve to send HTTP POST requests
- \hookrightarrow support HTTP cookies (useful for JDK download)

Sebastien Varrette (University of Luxembourg)

Data Transfer in Practice

\$> scp [-P <port>] <src> <user>@<host>:<path>

\$> rsync -avzu [-e 'ssh -p <port>'] <src> <user>@<host>:<path>

- [Secure] Transfer from/to two remote machines over SSH
 → scp or (better) rsync (transfer only what is required)
- Assumes you have understood and configured appropriately SSH!

Sebastien Varrette (University of Luxembourg)

SSH: Secure Shell

- Ensure secure connection to remote (UL) server
 - \hookrightarrow establish encrypted tunnel using asymmetric keys
 - ✓ Public id_rsa.pub vs. Private id_rsa (without .pub)
 - ✓ typically on a non-standard port (Ex: 8022)

limits kiddie script

- ✓ Basic rule: 1 machine = 1 key pair
- \hookrightarrow the private key is **SECRET**: **never** send it to anybody
 - \checkmark Can be protected with a passphrase

ebastien Varrette (University of Luxembourg)

SSH: Secure Shell

- Ensure secure connection to remote (UL) server
 - \hookrightarrow establish encrypted tunnel using asymmetric keys
 - v Public id_rsa.pub vs. Private id_rsa (without .pub)
 - ✓ typically on a non-standard port (Ex: 8022)

limits kiddie script

- ✓ Basic rule: 1 machine = 1 key pair
- \hookrightarrow the private key is **SECRET**: **never** send it to anybody
 - \checkmark Can be protected with a passphrase
- SSH is used as a secure backbone channel for many tools
 - \hookrightarrow Remote shell i.e remote command line
 - \hookrightarrow File transfer: rsync, scp, sftp
 - \hookrightarrow versionning synchronization (svn, git), github, gitlab etc.

Sebastien Varrette (University of Luxembourg)

SSH: Secure Shell

- Ensure secure connection to remote (UL) server
 - \hookrightarrow establish encrypted tunnel using asymmetric keys
 - ✓ Public id_rsa.pub vs. Private id_rsa (without .pub)
 - ✓ typically on a non-standard port (Ex: 8022)

limits kiddie script

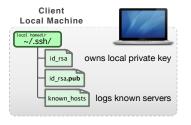
- ✓ Basic rule: 1 machine = 1 key pair
- \hookrightarrow the private key is **SECRET**: **never** send it to anybody
 - \checkmark Can be protected with a passphrase
- SSH is used as a secure backbone channel for many tools
 - \hookrightarrow Remote shell i.e remote command line
 - \hookrightarrow File transfer: rsync, scp, sftp
 - \hookrightarrow versionning synchronization (svn, git), github, gitlab etc.
- Authentication:
 - \hookrightarrow password
 - \hookrightarrow (better) public key authentication

(disable if possible)

Big Data Analytics

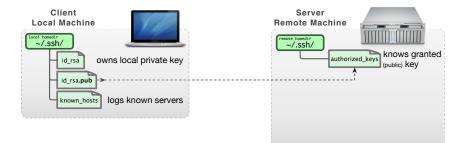
Sebastien Varrette (University of Luxembourg

SSH: Public Key Authentication



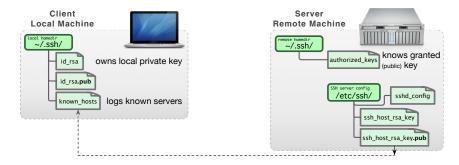
Sebastien Varrette (University of Luxembourg)

SSH: Public Key Authentication



Sebastien Varrette (University of Luxembourg)

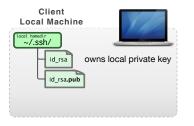
SSH: Public Key Authentication

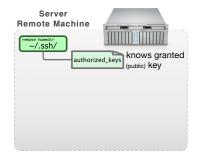


Sebastien Varrette (University of Luxembourg)

Big Data Analytics

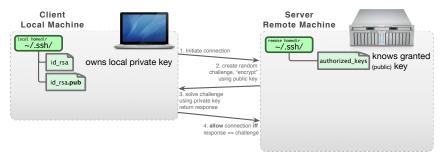
SSH: Public Key Authentication





Sebastien Varrette (University of Luxembourg)

SSH: Public Key Authentication



• Restrict to public key authentication: /etc/ssh/sshd_config:

Hands-on 3: Data transfer over SSH

• Before doing **Big** Data, learn how to transfer data between 2 hosts \hookrightarrow do it securely over SSH

```
# Quickly generate a 10GB file
$> dd if=/dev/zero of=/tmp/bigfile.txt bs=100M count=100
# Now try to transfert it between the 2 Vagrant boxes ;)
```

Hands-on 3

http://nesusws-tutorials-BD-DL.rtfd.io/en/latest/hands-on/data-transfer/

Generate SSH Key Pair and authorize the public part Step 1
 Data transfer over SSH with scp Step 2.a
 Data transfer over SSH with rsync Step 2.b

Sebastien Varrette (University of Luxembourg)

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spark Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Sebastien Varrette (University of Luxembourg

Sharing Code and Data

• Before doing **Big** Data, manage and version correctly normal data

Sharing Code and Data

• Before doing **Big** Data, manage and version correctly normal data

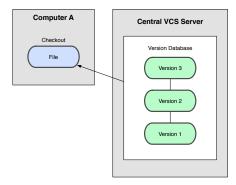
• Which one?

 $\,\hookrightarrow\,$ Depends on the level of privacy you expect

- \checkmark \ldots but you probably already know these tools
- \hookrightarrow Few handle GB files...

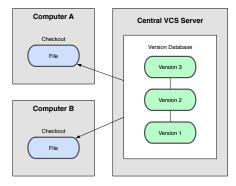
Sebastien Varrette (University of Luxembourg)

Centralized VCS - CVS, SVN



ebastien Varrette (University of Luxembourg)

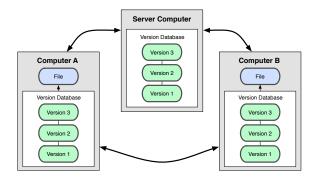
Centralized VCS - CVS, SVN



Sebastien Varrette (University of Luxembourg)

Big Data Analytics

Distributed VCS - Git



Everybody has the full history of commits

Sebastien Varrette (University of Luxembourg)

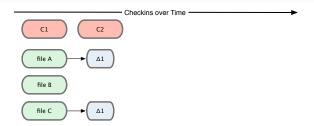
Big Data Analytics

Tracking changes (most VCS)

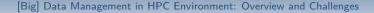
	Checkins over Time	→
C1		
file A		
file B		
file C		

Sebastien Varrette (University of Luxembourg)

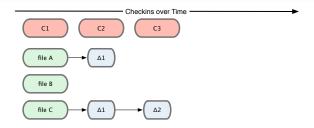
Tracking changes (most VCS)



ebastien Varrette (University of Luxembourg)



Tracking changes (most VCS)

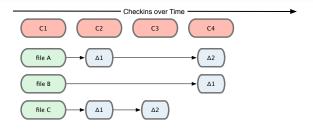


Sebastien Varrette (University of Luxembourg

Big Data Analytics

62 / 133

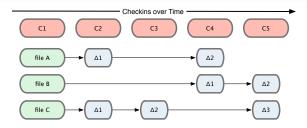
Tracking changes (most VCS)



Sebastien Varrette (University of Luxembourg

Big Data Analytics

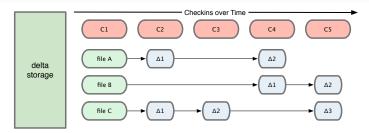
Tracking changes (most VCS)



Sebastien Varrette (University of Luxembourg)

Big Data Analytics

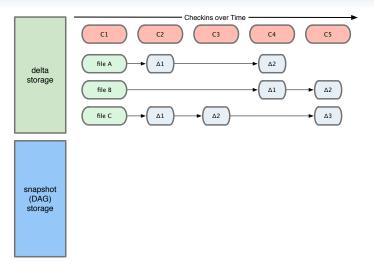
Tracking changes (most VCS)



Sebastien Varrette (University of Luxembourg)

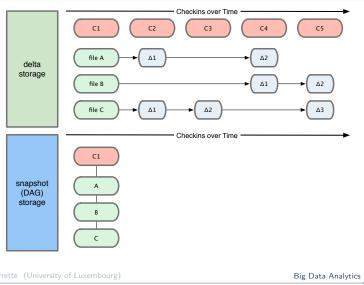
Big Data Analytics

Tracking changes (Git)



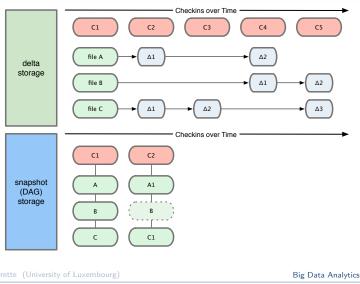
UNIVERSITÉ DU LUXEMBOURG

Tracking changes (Git)



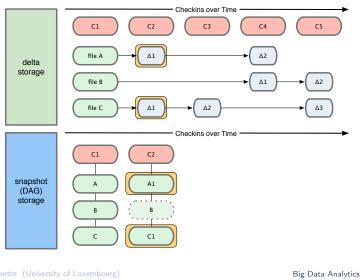
UNIVERSITÉ DU LUXEMBOURG

Tracking changes (Git)



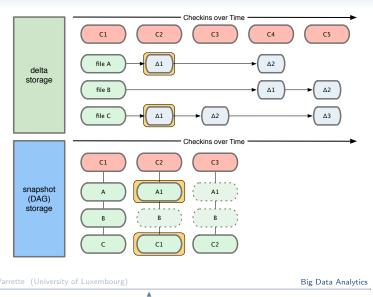
UNIVERSITÉ DU LUXEMBOURG 62 / 133

Tracking changes (Git)



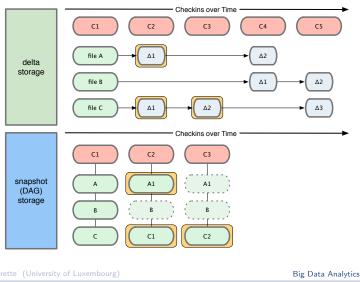
UNIVERSITÉ DU LUXEMBOURG 62 / 133

Tracking changes (Git)



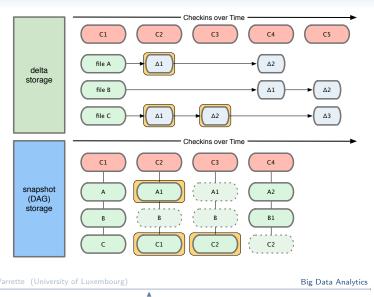
UNIVERSITÉ DU LUXEMBOURG 62 / 133

Tracking changes (Git)



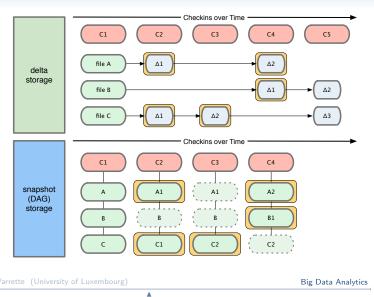
UNIVERSITÉ DU LUXEMBOURG

Tracking changes (Git)



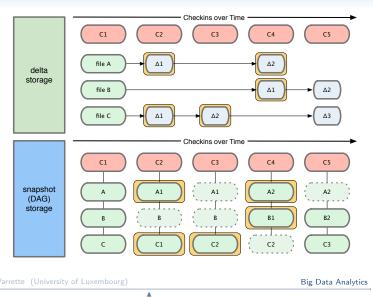
UNIVERSITÉ DU LUXEMBOURG

Tracking changes (Git)



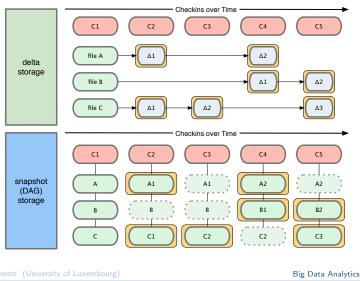
UNIVERSITÉ DU LUXEMBOURG 62 / 133

Tracking changes (Git)

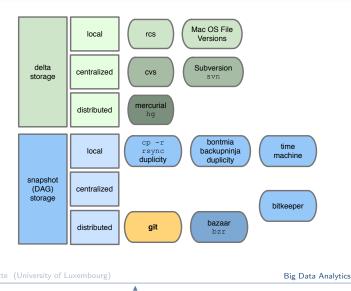


UNIVERSITÉ DU LUXEMBOURG 62 / 133

Tracking changes (Git)



VCS Taxonomy



UNIVERSITÉ DU LUXEMBOURG 63 / 133

Git at the heart of BD

http://git-scm.org

Big Data Analytics

UNIVERSITÉ DU LUXEMBOURG 64 / 133

Git on the Cloud: Github github.com

(Reference) web-based Git repository hosting service

Set up Git

Fork repository

Create Repository

Work together

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

So what makes Git so useful?

(almost) Everything is local

- everything is fast
- every clone is a backup
- you work mainly offline

Ultra Fast, Efficient & Robust

- Snapshots, not patches (deltas)
- Cheap branching and merging
 - $\,\hookrightarrow\,$ Strong support for thousands of parallel branches
- Cryptographic integrity everywhere

Sebastien Varrette (University of Luxembourg)

Other Git features

- Git does not delete
 - \hookrightarrow Immutable objects, Git generally only adds data
 - $\,\hookrightarrow\,$ If you mess up, you can usually recover your stuff
 - $\checkmark~$ Recovery can be tricky though

Other Git features

• Git does not delete

- \hookrightarrow Immutable objects, Git generally only adds data
- $\,\hookrightarrow\,$ If you mess up, you can usually recover your stuff
 - \checkmark Recovery can be tricky though

Git Tools / Extension

- cf. Git submodules or subtrees
- Introducing git-flow
 - $\,\hookrightarrow\,$ workflow with a strict branching model
 - $\,\hookrightarrow\,$ offers the git commands to follow the workflow

```
$> git flow init
$> git flow feature { start, publish, finish } <name>
$> git flow release { start, publish, finish } <version>
```


Git in practice

Basic Workflow

• Pull latest changes	git pull
• Edit files	<pre>vim / emacs / subl</pre>
 Stage the changes 	git add
 Review your changes 	git status
 Commit the changes 	git commit

Git in practice

Basic Workflow

 Pull latest changes 	git pull
• Edit files	<pre>vim / emacs / subl</pre>
 Stage the changes 	git add
 Review your changes 	git status
 Commit the changes 	git commit

Git Summary

• Advices: Commit early, commit often!

- \hookrightarrow commits = save points
 - \checkmark use descriptive commit messages
- $\,\hookrightarrow\,$ Do not get out of sync with your collaborators
- $\,\hookrightarrow\,$ Commit the sources, not the derived files
- Not covered here (by lack of time)
 - \hookrightarrow does not mean you should not dig into it!
 - \hookrightarrow Resources:
 - ✓ https://git-scm.com/
 - ✓ tutorial: IT/Dev[op]s Army Knives Tools for the Researcher
 - ✓ tutorial: Reproducible Research at the Cloud Era

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

69 / 133

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spark Apache Hadoop Apache Spark

Deep Learning Analytics with Tensorflow

Sebastien Varrette (University of Luxembourg)

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spark Apache Hadoop

Apache Spark

Deep Learning Analytics with Tensorflow

What is a Distributed File System?

- Straightforward idea: separate logical from physical storage.
 - \hookrightarrow Not all files reside on a single physical disk,
 - $\,\hookrightarrow\,$ or the same physical server,
 - $\,\hookrightarrow\,$ or the same physical rack,
 - $\,\hookrightarrow\,$ or the same geographical location, \ldots
- Distributed file system (DFS):
 - $\,\hookrightarrow\,$ virtual file system that enables clients to access files
 - \checkmark ... as if they were stored locally.

What is a Distributed File System?

• Straightforward idea: separate logical from physical storage.

- \hookrightarrow Not all files reside on a single physical disk,
- $\,\hookrightarrow\,$ or the same physical server,
- $\,\hookrightarrow\,$ or the same physical rack,
- \hookrightarrow or the same geographical location,...
- Distributed file system (DFS):
 - \hookrightarrow virtual file system that enables clients to access files
 - \checkmark ... as if they were stored locally.

• Major DFS distributions:

- $\,\hookrightarrow\,$ NFS: originally developed by Sun Microsystems, started in 1984
- \hookrightarrow AFS/CODA: originally prototypes at Carnegie Mellon University
- $\hookrightarrow\,$ GFS: Google paper published in 2003, not available outside Google
- $\,\hookrightarrow\,$ HDFS: designed after GFS, part of Apache Hadoop since 2006

Distributed File System Architecture?

Master-Slave Pattern

- Single (or few) master nodes maintain state info. about clients
- All clients R&W requests go through the global master node.
- Ex: GFS, HDFS

Distributed File System Architecture?

Master-Slave Pattern

- Single (or few) master nodes maintain state info. about clients
- All clients R&W requests go through the global master node.
- Ex: GFS, HDFS

Peer-to-Peer Pattern

- No global state information.
- Each node may both serve and process data.

Sebastien Varrette (University of Luxembourg)

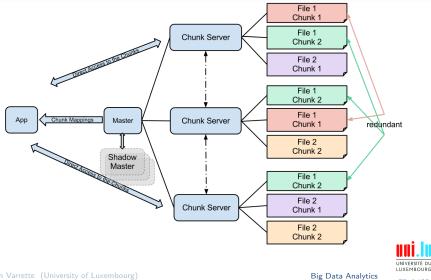
Google File System (GFS) (2003)

- Radically different architecture compared to NFS, AFS and CODA.
 - → specifically tailored towards large-scale and long-running analytical processing tasks
 - $\,\hookrightarrow\,$ over thousands of storage nodes.

• Basic assumption:

- \hookrightarrow client nodes (aka. *chunk servers*) may fail any time!
- \hookrightarrow Bugs or hardware failures.
- \hookrightarrow Special tools for monitoring, periodic checks.
- \hookrightarrow Large files (multiple GBs or even TBs) are split into 64 MB *chunks*.
- $\,\hookrightarrow\,$ Data modifications are mostly append operations to files.
- \hookrightarrow Even the master node may fail any time!
 - $\checkmark~$ Additional *shadow master* fallback with read-only data access.
- Two types of reads: Large sequential reads & small random reads

Google File System (GFS) (2003)



GFS Consistency Model

• Atomic File Namespace Mutations

- \hookrightarrow File creations/deletions centrally controlled by the master node.
- $\,\hookrightarrow\,$ Clients typically create and write entire file,
 - $\checkmark~$ then add the file name to the file namespace stored at the master.

• Atomic Data Mutations

 $\,\hookrightarrow\,$ only 1 atomic modification of 1 replica (!) at a time is guaranteed.

• Stateful Master

- $\,\hookrightarrow\,$ Master sends regular heartbeat messages to the chunk servers
- $\,\hookrightarrow\,$ Master keeps chunk locations of all files (+ replicas) in memory.
- $\,\hookrightarrow\,$ locations not stored persistently. . .
 - \checkmark but polled from the clients at startup.

• Session Semantics

- $\,\hookrightarrow\,$ Weak consistency model for file replicas and client caches only.
- $\,\hookrightarrow\,$ Multiple clients may read and/or write the same file concurrently.
- \hookrightarrow The client that last writes to a file wins.

Fault Tolerance & Fault Detection

• Fast Recovery

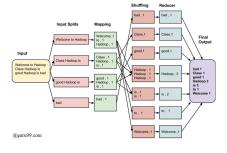
- $\hookrightarrow\,$ master & chunk servers can restore their states and (re-)start in s.
 - $\checkmark~$ regardless of previous termination conditions.

• Master Replication

- \hookrightarrow shadow master provides RO access when primary master is down.
 - $\checkmark~$ Switches back to read/write mode when primary master is back.
- $\,\hookrightarrow\,$ Master node does not keep a persistent state info. of its clients,
 - $\checkmark~$ rather polls clients for their states when started.
- Chunk Replication & Integrity Checks
 - $\hookrightarrow\,$ chunk divided into 64 KB blocks, each with its own 32-bit checksum $\checkmark\,$ verified at read and write times.
 - $\hookrightarrow \mbox{ Higher replication factors for more intensively requested chunks (hotspots) can be configured.}$

Map-Reduce

- Breaks the processing into two main phases:
 - 1. the map phase
 - 2. the reduce phase.
- Each phase has key-value pairs as input and output,
 - $\,\hookrightarrow\,$ the types of which may be chosen by the programmer.
 - $\,\hookrightarrow\,$ the programmer also specifies the map and reduce functions



Sebastien Varrette (University of Luxembourg)

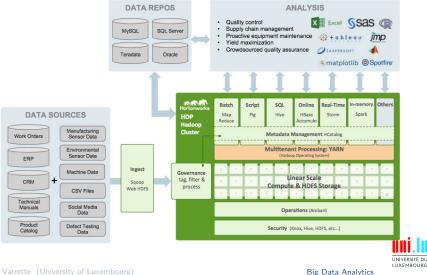
Hadoop

- Initially started as a student project at Yahoo! labs in 2006
 - $\,\hookrightarrow\,$ Open-source Java implem. of GFS and MapReduce frameworks
- Switched to Apache in 2009. Now consists of three main modules:
 - 1. HDFS: Hadoop distributed file system
 - 2. YARN: Hadoop job scheduling and resource allocation
 - 3. MapReduce: Hadoop adaptation of the MapReduce principle

Hadoop

- Initially started as a student project at Yahoo! labs in 2006
 - $\,\hookrightarrow\,$ Open-source Java implem. of GFS and MapReduce frameworks
- Switched to Apache in 2009. Now consists of three main modules:
 - 1. HDFS: Hadoop distributed file system
 - 2. YARN: Hadoop job scheduling and resource allocation
 - 3. MapReduce: Hadoop adaptation of the MapReduce principle
- Basis for many other open-source Apache toolkits:
 - → PIG/PigLatin: file-oriented data storage & script-based query language
 - \hookrightarrow **HIVE**: distributed SQL-style data warehouse
 - \hookrightarrow **HBase**: distributed key-value store
 - $\hookrightarrow \ \textbf{Cassandra:} \ fault-tolerant \ distributed \ database, \ etc.$
- HDFS still mostly follows the original GFS architecture.

Hadoop Ecosystem

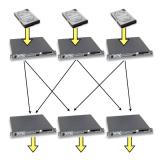


80 / 133

Scale-Out Design

- $\bullet~HDD$ streaming speed $\sim 50MB/s$
 - $\hookrightarrow \ {\rm 3TB} = {\rm 17.5 \ hrs}$
 - $\, \hookrightarrow \, 1\mathsf{PB} = 8 \, \, \mathsf{months} \,$
- Scale-out (weak scaling)
 - $\,\hookrightarrow\,$ FS distributes data on ingest
- Seeking too slow
 - $\hookrightarrow\ {\sim}10\text{ms for a seek}$
 - \hookrightarrow Enough time to read half a megabyte
- Batch processing
- Go through entire data set in one (or small number) of passes

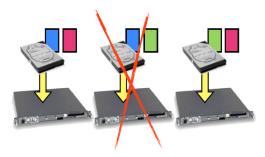
Combining Results



- Each node preprocesses its local data
 - $\hookrightarrow \ \, {\rm Shuffles \ its \ data \ to \ a \ small \ number \ of \ other \ nodes}$
- Final processing, output is done there

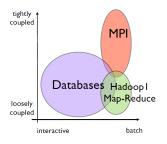
Fault Tolerance

- Data also replicated upon ingest
- Runtime watches for dead tasks, restarts them on live nodes
- Re-replicates



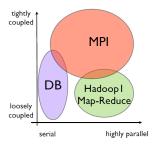
Sebastien Varrette (University of Luxembourg)

Hadoop: What is it Good At?



- Classic Hadoop 1.x is all about batch processing of massive amounts of data
 - $\,\hookrightarrow\,$ Not much point below ${\sim}1\text{TB}$
- Map-Reduce is relatively loosely coupled;
 → one shuffle phase.
- Very strong weak scaling in this model
 - $\,\hookrightarrow\,$ more data, more nodes.
- Batch:
 - $\,\hookrightarrow\,$ process all data in one go
 - ✓ w/classic Map Reduce
 - → Current Hadoop has many other capabilities besides batch - more later

Hadoop: What is it Good At?



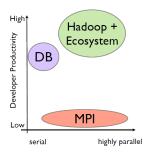
• Compare with databases

- $\hookrightarrow \mbox{ very good at working on small subsets of} \\ \mbox{ large databases}$
 - $\checkmark~$ DBs: very interactive for many tasks
 - \checkmark \ldots yet have been difficult to scale

• Compare with HPC (MPI)

- $\, \hookrightarrow \, \, {\sf Also typically batch} \,$
- $\,\hookrightarrow\,$ Can (and does) go up to enormous scales
- Works extremely well for very tightly coupled problems:
 - $\,\hookrightarrow\,$ zillions of iterations/timesteps/ exchanges.

Hadoop vs HPC



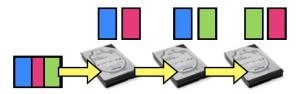
- We HPC users might be tempted to an unseemly smugness
 - → They solved the problem of disk-limited, loosely-coupled, data analysis by throwing more disks at it and weak scaling? Ooooooooh

• We would be wrong.

- \hookrightarrow A single novice developer can write:
 - real, scalable,
 - ✓ 1000+ node data-processing tasks in Hadoop-family tools in an afternoon.
- \hookrightarrow In MPI... less likely...

Data Distribution: Disk

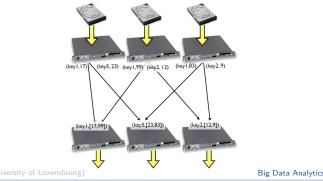
- $\bullet\,$ Hadoop & al. arch. handle the hardest part of parallelism for you
 - $\, \hookrightarrow \, \text{ aka data distribution}.$
- On disk:
 - $\,\hookrightarrow\,$ HDFS distributes, replicates data as it comes in
 - $\,\hookrightarrow\,$ Keeps track of computations local to data



Sebastien Varrette (University of Luxembourg)

Data Distribution: Network

- On network: Map Reduce (eg) works in terms of key-value pairs.
 - \hookrightarrow Preprocessing (map) phase ingests data, emits (k, v) pairs
 - \hookrightarrow Shuffle phase assigns reducers,
 - $\checkmark~$ gets all pairs with same key onto that reducer.
 - $\,\hookrightarrow\,$ Programmer does not have to design communication patterns



Analytics 88 / 133

Makes the problem easier

• Hardest parts of parallel programming with HPC tools

- \hookrightarrow Decomposing the problem, and,
- $\,\hookrightarrow\,$ Getting the intermediate data where it needs to go,

• Hadoop does that for you

- \hookrightarrow automatically
- \hookrightarrow for a wide range of problems.

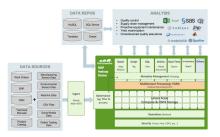
Sebastien Varrette (University of Luxembourg)

Big Data Analytics

89 / 133

Built a reusable substrate

- HDFS and the MapReduce layer were very well architected.
 - $\,\hookrightarrow\,$ Enables many higher-level tools
 - \hookrightarrow Data analysis, machine learning, NoSQL DBs,...
- Extremely productive environment
 - \hookrightarrow And Hadoop 2.x (YARN) is now much much more than just MapReduce



Sebastien Varrette (University of Luxembourg)

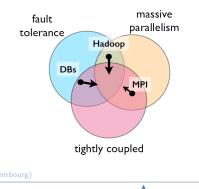
Big Data Analytics

90 / 133

Hadoop and HPC

• Not either-or anyway

- $\,\hookrightarrow\,$ Use HPC to generate big / many simulations,
- $\,\hookrightarrow\,$ Use Hadoop to analyze results
 - ✓ Ex: Use Hadoop to preprocess huge input data sets (ETL),
 - \checkmark \ldots and HPC to do the tightly coupled computation afterwards.
- In all cases: Everything is Converging



The Hadoop Filesystem

• HDFS is a distributed parallel filesystem

- \hookrightarrow Not a general purpose file system
 - \checkmark does not implement posix
 - $\checkmark~$ cannot just mount it and view files
- Access via hdfs fs commands or programatic APIs
- Security slowly improving

\$>	hdfs	fs	-[cmd]	

cat	chgrp
chmod	chown
copyFromLocal	copyToLocal
ср	du
dus	expunge
get	getmerge
ls	lsr
mkdir	movefromLocal
mv	put
rm	rmr
setrep	stat
tail	test
text	touchz

Sebastien Varrette (University of Luxembourg)

The Hadoop Filesystem

Required to be:

- \hookrightarrow able to deal with large files, large amounts of data
- \hookrightarrow scalable & reliable in the presence of failures
- \hookrightarrow fast at reading contiguous streams of data
- $\,\hookrightarrow\,$ only need to write to new files or append to files
- \hookrightarrow require only commodity hardware

• As a result:

- \hookrightarrow Replication
- \hookrightarrow Supports mainly high bandwidth, not especially low latency
- \hookrightarrow No caching
 - ✓ what is the point if primarily for streaming reads?
 - \checkmark Poor support for seeking around files
 - ✓ Poor support for zillions of files
- $\,\hookrightarrow\,$ Have to use separate API to see filesystem
- \hookrightarrow Modelled after Google File System (2004 Map Reduce paper)

Sebastien Varrette (University of Luxembourg)

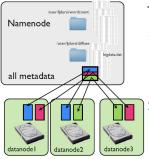
Hadoop vs HPC

- HDFS is a block-based FS
 - $\,\hookrightarrow\,$ A file is broken into blocks,
 - $\,\hookrightarrow\,$ these blocks are distributed across nodes
- Blocks are large;
 - \hookrightarrow 64MB is default,
 - $\,\hookrightarrow\,$ many installations use 128MB or larger

- Large block size
 - $\hookrightarrow \mbox{ time to stream a block much larger than} \mbox{ time disk time to access the block}.$

Lists all blocks in all files: \$> hdfs fsck / -files -blocks

Datanodes and Namenode



Two types of nodes in the filesystem:

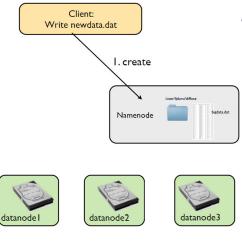
1. Namenode

- $\hookrightarrow \mbox{ stores all metadata / block locations in } \\ memory$
- $\,\hookrightarrow\,$ Metadata updates stored to persistent journal

2. Datanodes

- $\, \hookrightarrow \, \, \mathsf{store}/\mathsf{retrieve} \, \, \mathsf{blocks} \, \, \mathsf{for} \, \, \mathsf{client}/\mathsf{namenode}$
- Newer versions of Hadoop: federation
 - $\,\hookrightarrow\,\neq\,$ namenodes for /user, /data...
 - $\, \hookrightarrow \ \text{High Availability namenode pairs}$

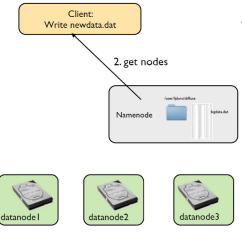
Writing a file



- Writing a file multiple stage process:
 - $\, \hookrightarrow \, \, {\sf Create \ file} \,$
 - $\, \hookrightarrow \, \, \operatorname{Get} \, \operatorname{nodes} \, \operatorname{for} \, \operatorname{blocks} \,$
 - $\, \hookrightarrow \, \, \mathsf{Start} \, \, \mathsf{writing} \,$
 - \hookrightarrow Data nodes coordinate replication
 - $\, \hookrightarrow \, \, \operatorname{\mathsf{Get}} \, \operatorname{\mathsf{ack}} \, \operatorname{\mathsf{back}}$
 - \hookrightarrow Complete

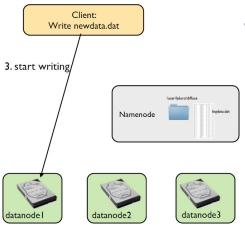
en Varrette (University of Luxembourg)

Writing a file



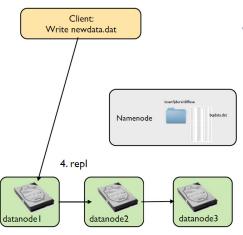
- Writing a file multiple stage process:
 - $\, \hookrightarrow \, \, {\sf Create \ file} \,$
 - $\, \hookrightarrow \, \, \operatorname{Get} \, \operatorname{nodes} \, \operatorname{for} \, \operatorname{blocks} \,$
 - $\, \hookrightarrow \, \, \mathsf{Start} \, \, \mathsf{writing} \,$
 - → Data nodes coordinate replication
 - $\, \hookrightarrow \, \, \operatorname{\mathsf{Get}} \, \operatorname{\mathsf{ack}} \, \operatorname{\mathsf{back}}$
 - \hookrightarrow Complete

Writing a file



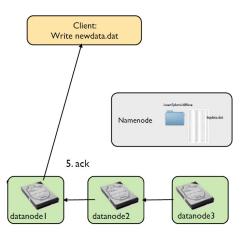
- Writing a file multiple stage process:
 - $\, \hookrightarrow \, \, {\sf Create \ file} \,$
 - $\, \hookrightarrow \, \, \operatorname{Get} \, \operatorname{nodes} \, \operatorname{for} \, \operatorname{blocks} \,$
 - $\, \hookrightarrow \, \, \mathsf{Start} \, \, \mathsf{writing} \,$
 - \hookrightarrow Data nodes coordinate replication
 - $\, \hookrightarrow \, \, \operatorname{\mathsf{Get}} \, \operatorname{\mathsf{ack}} \, \operatorname{\mathsf{back}}$
 - \hookrightarrow Complete

Writing a file



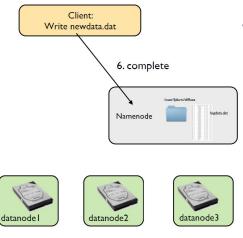
- Writing a file multiple stage process:
 - $\, \hookrightarrow \, \, {\sf Create \ file} \,$
 - $\, \hookrightarrow \, \, \operatorname{Get} \, \operatorname{nodes} \, \operatorname{for} \, \operatorname{blocks} \,$
 - $\, \hookrightarrow \, \, \mathsf{Start} \, \, \mathsf{writing} \,$
 - \hookrightarrow Data nodes coordinate replication
 - $\, \hookrightarrow \, \, \operatorname{\mathsf{Get}} \, \operatorname{\mathsf{ack}} \, \operatorname{\mathsf{back}}$
 - \hookrightarrow Complete

Writing a file



- Writing a file multiple stage process:
 - $\, \hookrightarrow \, \, {\sf Create \ file} \,$
 - $\, \hookrightarrow \, \, {\rm Get \ nodes \ for \ blocks}$
 - $\, \hookrightarrow \, \, \mathsf{Start} \, \, \mathsf{writing} \,$
 - $\hookrightarrow \mbox{ Data nodes coordinate } replication$
 - Get ack back (while writing)
 - $\, \hookrightarrow \, \, \mathsf{Complete}$

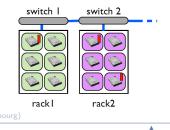
Writing a file



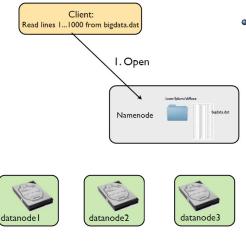
- Writing a file multiple stage process:
 - $\, \hookrightarrow \, \, {\sf Create \ file} \,$
 - $\, \hookrightarrow \, \, \operatorname{Get} \, \operatorname{nodes} \, \operatorname{for} \, \operatorname{blocks} \,$
 - $\, \hookrightarrow \, \, \mathsf{Start} \, \, \mathsf{writing} \,$
 - $\hookrightarrow \mbox{ Data nodes coordinate } replication$
 - Get ack back (while writing)
 - \hookrightarrow Complete

Where to Replicate?

- Tradeoff to choosing replication locations
 - \hookrightarrow Close: faster updates, less network bandwidth
 - \hookrightarrow **Further**: better failure tolerance
- Default strategy:
 - 1. copy on different location on same node
 - 2. second on different rack(switch),
 - 3. third on same rack location, different node.
- Strategy configurable.
 - $\,\hookrightarrow\,$ Need to configure Hadoop file system to know location of nodes



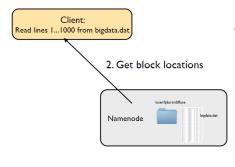
Reading a file



• Reading a file

- $\hookrightarrow \ \mathsf{Open \ call}$
- $\, \hookrightarrow \, \, {\sf Get \, \, block \, \, locations} \,$
- $\, \hookrightarrow \, \, {\sf Read} \, \, {\sf from} \, \, {\sf a} \, \, {\sf replica}$

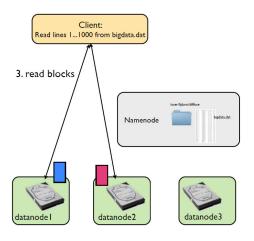
Reading a file



• Reading a file

- $\hookrightarrow \ \mathsf{Open \ call}$
- $\, \hookrightarrow \, \, {\rm Get \, \, block \, \, locations}$
- $\, \hookrightarrow \, \, \mathsf{Read} \, \, \mathsf{from} \, \, \mathsf{a} \, \, \mathsf{replica}$

Reading a file



• Reading a file

- \hookrightarrow Open call
- $\, \hookrightarrow \, \, {\rm Get \, \, block \, \, locations}$
- $\, \hookrightarrow \, \, \mathsf{Read} \, \, \mathsf{from} \, \, \mathsf{a} \, \, \mathsf{replica}$

Sebastien Varrette (University of Luxembourg)

98 / 133

Configuring HDFS

- Need to tell HDFS how to set up filesystem
 - \hookrightarrow data.dir, name.dir
 - $\checkmark~$ where on local system (eg, local disk) to write data
 - $\,\hookrightarrow\,$ parameters like replication
 - \checkmark how many copies to make
 - $\,\hookrightarrow\,$ default name default file system to use
 - $\hookrightarrow \ \mathsf{Can} \ \mathsf{specify} \ \mathsf{multiple} \ \mathsf{FSs}$

Sebastien Varrette (University of Luxembourg)

Configuring HDFS

```
<!-- $HADOOP_PREFIX/etc/hadoop/core-site.xml -->
<configuration>
  <property>
   <name>fs.defaultFS</name>
   <value>hdfs://<server>:9000</value>
  </property>
  <property>
    <name>dfs.data.dir</name>
    <value>/home/username/hdfs/data</value>
  </property>
  <property>
    <name>dfs.name.dir</name>
    <value>/home/username/hdfs/name</value>
  </property>
  <property>
    <name>dfs.replication</name>
    <value>3</value>
  </property>
</configuration>
```


Sebastien Varrette (University of Luxembourg)

Configuring HDFS

- In Practice, in single mode
 - $\,\hookrightarrow\,$ Only one node to be used, the VM
 - \hookrightarrow default server: localhost
 - $\, \hookrightarrow \, \, {\rm Since \ only \ one \ node:} \,$
 - $\checkmark~$ need to specify replication factor of 1, or will always fail

```
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
[...]
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
```


Sebastien Varrette (University of Luxembourg)

Big Data Analytics

101 / 133

Configuring HDFS

- You will need to make sure that environment variables are set
 - $\,\hookrightarrow\,$ path to Java, path to Hadoop...
 - \hookrightarrow Easybuild does **most** of the job for you
- You will need passwordless SSH access accross all nodes
- You can then start processes on various FS nodes

Sebastien Varrette (University of Luxembourg)

Configuring HDFS

- You will need to make sure that environment variables are set
 - $\,\hookrightarrow\,$ path to Java, path to Hadoop...
 - \hookrightarrow Easybuild does **most** of the job for you
- You will need passwordless SSH access accross all nodes
- You can then start processes on various FS nodes
- Once configuration files are set up,
 - $\,\,\hookrightarrow\,\,$ you can format the namenode like so
 - \hookrightarrow you can start up just the file systems

\$> hdfs namenode -format
\$> start-dfs.sh

UNIVERSITÉ DU

Sebastien Varrette (University of Luxembourg)

Using HDFS

- Once the file system is up and running,
 - \hookrightarrow \ldots you can copy files back and forth

\$> hadoop fs -{get|put|copyFromLocal|copyToLocal} [...]

● Default directory is /user/\${username} → Nothing like a cd

\$>	hdfs	fs	-mkdi	ir /home/w	/agrant/hdfs-test	
\$>	hdfs	fs	-ls	/home/vagrant		
\$>	hdfs	fs	-ls	/home/vagrant/hdfs-test		
\$>	hdfs	fs	-put	data.dat	/home/vagrant/hdfs-test	
\$>	hdfs	fs	-ls	/home/v	vagrant/hdfs-test	

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

Using HDFS

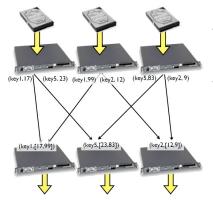
- In general, the data files you send to HDFS will be large \hookrightarrow or else why bother with Hadoop.
- Do not want to be constantly copying back and forth

 \hookrightarrow view, append *in place*

- Several APIs to accessing the HDFS
 - \hookrightarrow Java, C++, Python
- Here, we use one to get a file status, and read some data from it at some given offset

Sebastien Varrette (University of Luxembourg)

Back to Map-Reduce



- Map processes one element at a time
 - $\,\hookrightarrow\,$ emits results as (key, value) pairs.
- All results with same key are gathered to the same reducers

- $\,\hookrightarrow\,$ Reducers process list of values
- \hookrightarrow emit results as (key, value) pairs

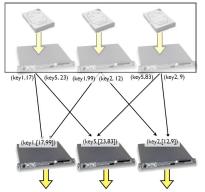
Мар

- All coupling done during shuffle phase
 - $\, \hookrightarrow \, \, \mathsf{Embarrassingly \ parallel \ task}$
 - $\, \hookrightarrow \, \text{ all map}$
- Take input, map it to output, done.

- Famous case
 - $\hookrightarrow \mathsf{NYT} \text{ using Hadoop to convert 11} \\ \text{million image files to PDFs}$
 - $\checkmark~$ almost pure serial farm job

Sebastien Varrette (University of Luxembourg)

Reduce

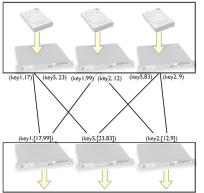


- Reducing gives the coupling
- In the case of the NYT task:
 - \hookrightarrow not quite embarrassingly parallel:
 - \checkmark images from multi-page articles
 - \checkmark Convert a page at a time,
 - ✓ gather images with same article id onto node for conversion

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

Shuffle



• shuffle is part of the Hadoop magic

- $\,\hookrightarrow\,$ By default, keys are hashed
- $\hookrightarrow \text{ hash space is partitioned between} \\ \text{reducers}$

• On reducer:

- $\label{eq:gathered} \hookrightarrow \mbox{ gathered } (k,v) \mbox{ pairs from mappers} \\ \mbox{ are sorted by key,}$
- $\,\hookrightarrow\,$ then merged together by key
- $\label{eq:reducer} \hookrightarrow \mbox{ Reducer then runs on one } (k, [v]) \\ \mbox{ tuple at a time}$
- you can supply your own partitioner
 - $\,\hookrightarrow\,$ Assign similar keys to same node

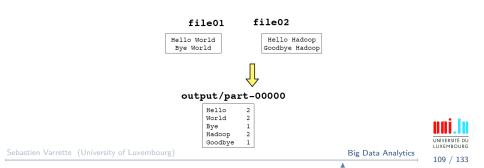
Big Data Analytics

 \hookrightarrow Reducer still only sees one (k, [v] tuple at a time.

108 / 133

Example: Wordcount

- Was used as an example in the original MapReduce paper
 → Now basically the hello world of map reduce
- Problem description: Given a set of documents:
 - $\,\hookrightarrow\,$ count occurences of words within these documents



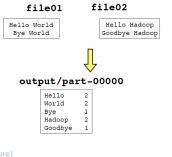
Example: Wordcount

• How would you do this with a huge document?

- \hookrightarrow Each time you see a word:
 - ✓ if it is a new word, add a tick mark beside it,
 - \checkmark otherwise add a new word with a tick

• ... But hard to parallelize

 $\,\hookrightarrow\,$ pb when updating the list

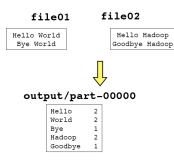


Sebastien Varrette (University of Luxembourg)

Big Data Analytics

110 / 133

Example: Wordcount



MapReduce way

- $\hookrightarrow\,$ all hard work done automatically by shuffle
- Map:
 - \hookrightarrow just emit a 1 for each word you see
- Shuffle:
 - \hookrightarrow assigns keys (words) to each reducer,
 - \hookrightarrow sends (k,v) pairs to appropriate reducer
- Reducer
 - \hookrightarrow just has to sum up the ones

Sebastien Varrette (University of Luxembourg)

Example: Wordcount

file01

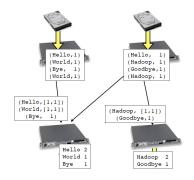


MapReduce way

- $\,\hookrightarrow\,$ all hard work done automatically by shuffle
- Map:
 - $\,\hookrightarrow\,$ just emit a 1 for each word you see
- Shuffle:
 - \hookrightarrow assigns keys (words) to each reducer,
 - \hookrightarrow sends (k,v) pairs to appropriate reducer
- Reducer
 - \hookrightarrow just has to sum up the ones

Sebastien Varrette (University of Luxembourg)

Example: Wordcount



• MapReduce way

- $\,\hookrightarrow\,$ all hard work done automatically by shuffle
- Map:
 - $\,\hookrightarrow\,$ just emit a 1 for each word you see
- Shuffle:
 - \hookrightarrow assigns keys (words) to each reducer,
 - \hookrightarrow sends (k,v) pairs to appropriate reducer
- Reducer
 - \hookrightarrow just has to sum up the ones

Hands-on 4: Playing with Hadoop

Your Turn!

• Now you are ready to play with the installed Hadoop

ity of Luxembourg)

Big Data Analytics

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spark Apache Hadoop Apache Spark

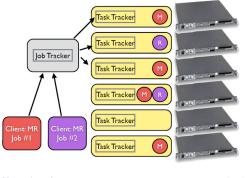
Deep Learning Analytics with Tensorflow

Sebastien Varrette (University of Luxembourg)

Big Data Analytics

Hadoop 0.1x

- $\bullet\,$ Original Hadoop was basically HDFS $+\,$ infra. for MapReduce
 - $\,\hookrightarrow\,$ Very faithful implementation of Google MapReduce paper.
 - $\,\hookrightarrow\,$ Job tracking, orchestration all very tied to M/R model
- Made it difficult to run other sorts of jobs

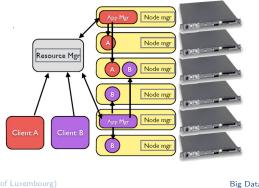


Sebastien Varrette (University of Luxembourg)

Big Data Analytics

YARN and Hadoop 2

- YARN: Yet Another Resource Negotiator
 - $\,\hookrightarrow\,$ Looks a lot more like a cluster scheduler/resource manager
 - $\, \hookrightarrow \, \text{ Allows arbitrary jobs.}$
- Allow for new compute/data tools. Ex: streaming with Spark



Sebastien Varrette (University of Luxembourg)

Big Data Analytics

Spark is (yet) a(-nother) distributed, Big Data processing platform.
 → Everything you can do in Hadoop, you can also do in Spark.

In contrast to Hadoop

- Spark computation paradigm is not just MapReduce job
- Key feature in-memory analyses.
 - $\hookrightarrow \mbox{ multi-stage, in-memory dataflow graph based on Resilient Distributed Datasets (RDDs).}$

UNIVERSITÉ DU LUXEMBOURG

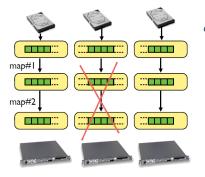
- Spark is implemented in Scala, running in a Java Virtual Machine.
 - $\,\hookrightarrow\,$ Spark supports different languages for application development:
 - $\checkmark~$ Java, Scala, Python, R, and SQL.
- Originally developed in AMPLab (UC Berkeley) from 2009,
 - \hookrightarrow donated to the Apache Software Foundation in 2013,
 - \hookrightarrow top-level project as of 2014.
- Latest release: 2.2.1 (Dec. 2017)

Sebastien Varrette (University of Luxembourg)

RDD

- Resilient Distributed Dataset (RDD)
 - \hookrightarrow Partitioned collections (lists, maps..) across nodes
 - \hookrightarrow Set of well-defined operations (incl map, reduce) defined on these RDDs.

RDD



- Fault tolerance works three ways:
 - \hookrightarrow Storing, reconstructing lineage
 - \hookrightarrow Replication (optional)
 - \hookrightarrow Persistance to disk (optional)

Sebastien Varrette (University of Luxembourg)

RDD Lineage

- Map Reduce implemented FT by outputting everything to disk always.
 - $\,\hookrightarrow\,$ Effective but extremely costly.
 - \hookrightarrow How to maintain fault tolerance without sacrificing in-memory performance?
 - $\checkmark~$ for truly large-scale analyses

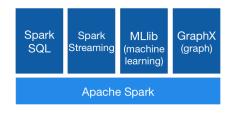
RDD Lineage

- Map Reduce implemented FT by outputting everything to disk always.
 - $\,\hookrightarrow\,$ Effective but extremely costly.
 - \hookrightarrow How to maintain fault tolerance without sacrificing in-memory performance?
 - \checkmark for truly large-scale analyses
- Solution:
 - $\,\hookrightarrow\,$ Record lineage of an RDD (think version control)
 - $\,\hookrightarrow\,$ If container, node goes down, reconstruct RDD from scratch
 - Either from beginning,
 - $\checkmark~$ or from (occasional) checkpoints which user has some control over.
 - $\,\hookrightarrow\,$ User can suggest caching current state of RDD in memory,
 - \checkmark or persisting it to disk, or both.
 - \hookrightarrow You can also save RDD to disk, or replicate partitions across nodes for other forms of fault tolerance.

Sebastien Varrette (University of Luxembourg)

Main Building Blocks

- The **Spark Core API** provides the general execution layer on top of which all other functionality is built upon.
- Four higher-level components (in the _Spark ecosystem):
 - 1. Spark SQL (formerly Shark),
 - 2. Streaming, to build scalable fault-tolerant streaming applications.
 - 3. MLlib for machine learning
 - 4. GraphX, the API for graphs and graph-parallel computation



Hands-on 5: Spark installation

Your Turn!

Hands-on 5

http://nesusws-tutorials-BD-DL.rtfd.io/en/latest/hands-on/spark/install/

- Use EasyBuild to search for a ReciPY for Apache Spark
- Install it and check the installed software

Sebastien Varrette (University of Luxembourg)

Hands-on 6: Spark Usage

Your Turn!

Sebastien Varrette (University of Luxembourg)

Summary

Introduction Before we start... Overview of HPC & BD Trends Main HPC and DB Components

Interlude: Software Management in HPC systems

[Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data

Big Data Analytics with Hadoop & Spark Apache Hadoop Apache Spark

Sebastien Varrette (University of Luxembourg)

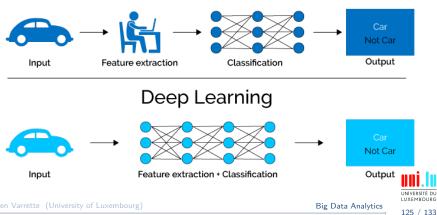
Deep Learning Analytics with Tensorflow

Big data and Machine/Deep Learning

• Out-of-scope of this tutorial:

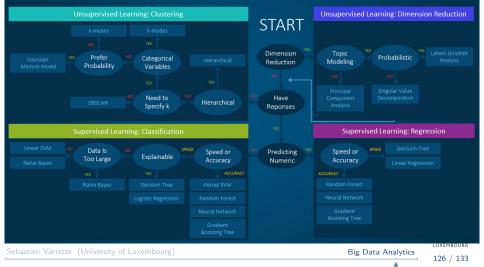
 $\,\hookrightarrow\,$ Machine Learning (ML) / Deep Learning theoretical basis

Machine Learning



Machine Learning Cheat sheet

Machine Learning Algorithms Cheat Sheet



Machine/Deep-Learning Frameworks

- Pytorch
 - $\,\hookrightarrow\,$ Python version of Torch open-sourced by Facebook in 2017.
 - $\hookrightarrow\,$ Torch is a computational framework with an API written in Lua that supports machine-learning algorithms.
 - $\hookrightarrow\,$ PyTorch offers dynamic computation graphs, which let you process variable-length inputs and outputs.
- TensorFlow
 - \hookrightarrow open source software library from Google for numerical computation using data flow graphs,
 - $\hookrightarrow\,$ thus close to the Deep Learning book way of thinking about neural networks.
- Keras,
 - $\,\hookrightarrow\,$ high-level neural networks API,
 - $\,\hookrightarrow\,$ written in Python and capable of running on top of TensorFlow.
- Caffee

 \hookrightarrow a well-known and widely used machine-vision library that ported \blacksquare

Matlabs implementation of fast convolutional nets to C and C++UNIVERSITE ON Sebastien Varrette University Alexandruction of the successor, Caffig Data Analytics YouáAZIII also have to consider its successor, Caffig Data Analytics 127 / 133

Machine/Deep-Learning Frameworks

- Offer various Package Design Choices
 - \hookrightarrow Model specification:
 - ✓ Configuration file (Caffe, DistBelief, CNTK) vs. programmatic generation (Torch, Theano, Tensorflow)
 - $\,\hookrightarrow\,$ For programmatic models, choice of high-level language:
 - ✓ Lua (Torch)
 - ✓ vs. Python (Theano, Tensorflow)
 - ✓ vs others (Go etc.)

In this talk

• We chose to work with python because of rich community and library infrastructure.

Sebastien Varrette (University of Luxembourg)

TensorFlow vs. Theano

- Theano is another deep-learning library with pythonwrapper
 - \hookrightarrow was inspiration for Tensorflow
- Theano and TensorFlow are very similar systems.
 - $\,\hookrightarrow\,$ TensorFlow has better support for distributed systems though,
 - $\hookrightarrow\,$ development funded by Google, while Theano is an academic project.

What is TensorFlow ?

- TensorFlow is a deep learning library recently open-sourced by Google.
 - $\,\hookrightarrow\,$ library for numerical computation using data flow graphs.
 - Nodes represent mathematical operations,
 - ✓ edges represent the multidimensional data arrays (tensors) communicated between them.
- Flexible architecture allowing to deploy computation anywhere:
 - $\,\hookrightarrow\,$ to one or more CPUs or GPUs in a desktop, server,
 - \hookrightarrow or mobile device with a single API.
- TensorFlow was originally developed within the Google Brain Team

Hands-on 7: Installing Tensorflow

• Without further development

- \hookrightarrow you are ready to play with tensorflow
- $\,\hookrightarrow\,$ provided tutorial is self-explicit and make use of Jupyter Notebook

Hands-on 8: Playing with Tensorflow

Your Turn!

Hands-on 8

http://nesusws-tutorials-BD-DL.rtfd.io/en/latest/hands-on/tensorflow/mnist/

- Run a very simple MNIST classifier Step 1

 → MNIST: computer vision dataset (images of handwritten digits)

 Run a deep MNIST classifier using convolutional layers Step 2
 - \hookrightarrow compare results with best models

Thank you for your attention...

Questions?

http://hpc.uni.lu

Dr. Sebastien Varrette University of Luxembourg, Belval Campus: Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: sebastien.varrette@uni.lu

 [Big] Data Management in HPC Environment: Overview and Challenges Performance Overview in Data transfer Data transfer in practice Sharing Data
 Big Data Analytics with Hadoop & Spark Apache Hadoop

Apache Spark

Deep Learning Analytics with Tensorflow

Sebastien Varrette (University of Luxembourg)